
ETMS System Design Document
Version 6.0

22-1

Section 22

Schedule Database Function

The Schedule Database (SDB) function provides airline schedule data to the ETMS system in
the following ways:

• It sends packets of scheduled airline flights (scheduled flight messages [FS]),
in a format similar to flight plan messages (FZ), to the Parser via nas.dist on a
continual basis, to be included in today's data.

• In response to requests from the listserver (see Section 17), it sends lists of
flights to or from specific airports for a requested time range.

In addition, commands can be sent to the SDB function to enter changes into the database.

NOTE: The listserver is sometimes called the Request Server, and should not be confused with the SDB
List Server.

The schedule database (SDB) consists of a main table of airline flight schedules stored in
departure time order and (within each minute of departure time) in flight ID order. A flight
schedule consists of the following:

• Flight ID

• Scheduled departure time

• Scheduled arrival time

• Departure airport

• Arrival airport

• Estimated time en route

• Aircraft type

• Days of the week on which the flight occurs

• Dates on which the flight becomes effective/discontinues

• Dates on which the flight becomes inhibited/activated

• Indications of flight status (inhibited, canceled)

ETMS System Design Document
Version 6.0

22-2

The departure time sort of the database allows quick access to multiple schedules in the order
in which they are to be sent to the NAS Distributor. There are a number of index files
accompanying the main file, which allow rapid access to flight schedules using the following
keys:

• Departure time (in 15-minute buckets)

• Arrival airports

• Departure airports

• Flight ID

• Air carrier

• Canceled flights

• Added flights

• Inhibited flights

The departure time index speeds access further by allowing the program to jump into the
database at a point within 15 minutes of departure time without having to search from the
beginning.

The arrival airports and departure airports indexes are used by the SDB List Server (see
Section 22.3) to create flight lists (by airport and time period) to send to the listserver. These
indexes are sorted by one-hour time buckets within each airport name. This provides quick
access to each airport's flights during a specific time period, allowing rapid response to LIST
requests.

The flight ID index is used by the Process Requests module of the Update/Request Server to
locate specific flights in the database to make requested changes to their schedules (see
Section 22.2.2).

The air carrier index is used by the Process Requests module to make changes for all flights of
a particular air carrier- Inhibit (INHB) and Activate (ACTV) requests.

The canceled flights, added flights, and inhibited flights indexes keep track of flights affected
by requests that resulted in changes to the database. The indexes allow quick access to those
flights for database updating and maintenance.

Processing Overview

Processing is begun by the SDB Server (see Section 22.1). As part of its initialization, the
SDB Server process connects to the ETMS Communications functions. Schedule data and
change requests are received through these connections. The process also acts as a TCP/IP

ETMS System Design Document
Version 6.0

22-3

server for communication with the Update/Request Server (see Section 22.2) and the SDB
List Server (see Section 22.3) processes. The Update/Request Server and the SDB List
Server each open a channel to the SDB Server in their respective initialization routines (see
Figure 22-1).

When the SDB Server receives a message from the ETMS Communications functions, it
determines the type of message from the first word or two. The process then passes the
message to the Update/Request Server or SDB List Server, as appropriate.

INHB, ACTV, FPSD, CXSD
requests, REMV command

LIST, INHB, ACTV,
FPSD, CXSD

requests

LIST, INHB, ACTV,
FPSD, CXSD

responses

FS, RS messages

INHB, ACTV, FPSD, CXSD
responses, REMV ack.

LIST request
MAP, UNMAP

requests

LIST response
MAP, UNMAP

ack.

SDB server
Update/request

server

SDB
schedules

schedules schedule changes

SDB list server

Figure 22-1. Overview of the SDB Processing Data Flow

In addition to responding to INHB, ACTV, Add Flight (FPSD), and Cancel Flight (CXSD)
requests passed to it by the SDB Server, the Update/Request Server creates FS messages
(modeled after FZ messages) from the flight schedules in the database. These newly created
messages are sent in packets to the NAS Distributor, which then passes them on to the
Traffic Model. The Update/Request Server sends FS messages independently of the SDB
Server: If, for any reason, the communications link to the SDB Server fails, the
Update/Request Server continues processing.

As well as passing messages along from external requests, the SDB Server passes MAP and
UNMAP messages internally to the SDB List Server. The Update/Request Server gains write
access to the database files to process INHB, ACTV, FPSD, or CXSD commands as
described in the following steps:

(1) The SDB Server sends an UNMAP command to the SDB List Server, causing
SDB List Server to release its access to the database files.

ETMS System Design Document
Version 6.0

22-4

(2) The external request is sent to the Update/Request Server, where it is processed.

(3) Finally, the SDB Server sends a MAP command to the SDB List Server to regain
access to the database files.

Another internal command is the REMV command which activates database housekeeping,
changing any canceled flights back to active status after their period of cancellation has
expired (24 hours). The SDB Server initiates this command when a timer event occurs at an
interval determined by a run-time parameter to the process. It sends the UNMAP command
to the SDB List Server and passes the REMV command to the Update/Request Server which
runs the housekeeping routine. It sends the MAP command to the SDB List Server after it
fields the reply from the Update/Request Server.

The SDB List Server receives all LIST and CLIST commands from the SDB Server. These
are messages sent by the ETMS listserver in an internal format to provide data for REQ LIST
requests made by the user through the TSD interface. The SDB List Server accumulates the
requested flight data, stores it in a binary file, and notifies the SDB Server when it is done; the
SDB Server then sends the file to the requesting listserver.

22.1 The SDB Server Process

Purpose

The SDB Server acts as a central source for receiving and sending messages, both within the
Schedule Database function and in other parts of the system at the central and field sites. It
also coordinates some of the routines needed to access and maintain the database.

Execution Control

The SDB Server is started along with the other programs that make up the Scheduled
Database function (namely the SDB List Server and the Update/Request Server) by nodescan.
The SDB List Server is invoked with one command line argument: the name of an ASCII file
that contains all the necessary initialization parameters, which are described in the Input
section.

The SDB Server process runs continuously; if it fails, it is restarted by nodescan. When
non-fatal errors occur, an error message appears in the sdb_server.pad.timestamp window of
the node on which it is running.

Input

The initialization parameters, read from the arguments file at program startup, are as follows:

• Directory in which the program will run.

ETMS System Design Document
Version 6.0

22-5

• Name of the TCP/IP file to communicate with the SDB List Server and the
Update Request Server and through which any cross-string communication will
occur.

• ETMS Communications function logical process class name for the listserver.

• Time interval at which to perform database maintenance (in hours).

• Number of minutes to wait between checks that the connection with the ETMS
Communications functions is still working.

• Name of the file with aliases for airports.

• Name of the file with site-specific authorization codes.

• Default site name to use for communicating through ETMS Communications.

• Number of cross-string SDB sites listed as next parameter(s).

• Optional argument for cross-string communication (the ETMS
Communications site name for an SDB Server on another string). There should
be as many of these (separate lines) as indicated in the previous parameter.

Messages received from the ETMS Communications functions and from the internal Schedule
Database function TCP/IP channels generate the main action of the program. The receipt of
these messages is signaled by the triggering of system event counts. Other input to the SDB
Server is also indicated by changes to the system event counts. This includes events
triggered by the system clock and by messages being removed from the TCP/IP channels.

Output

Output from the SDB Server consists of the following:

• Messages sent through the ETMS Communications functions to the listserver.

• Messages sent through internal channels to the client processes.

• Completed file that contains the response to a LIST request.

Processing

During program startup, the SDB Server reads the parameters file described in the Input
section. If the program cannot change to the directory named in the first input parameter, it
writes a diagnostic message to the screen and proceeds, running in the current directory. If
any other part of the initialization cannot be completed successfully, the program exits,
writing an appropriate diagnostic message to the screen. Initialization is completed by
opening all the necessary communications channels, initializing all the event counts that will be
monitored, and loading all the necessary files and tables into memory.

ETMS System Design Document
Version 6.0

22-6

After the initialization is complete, the SDB Server goes to sleep (waits for event counts to be
triggered). When an event occurs, it is processed according to its type. The possible events
are as follows:

• Internal Schedule Database function socket open channel request received - a
message received from the client program. This is a request from the SDB List
Server or the Update/Request Server to connect to the SDB Server.

• ETMS Communications functions message received from the listserver or TSD
- messages handled according to their type, determined by the first word in the
message text. INHB, ACTV, FPSD, and CXSD commands are sent through
the appropriate channel to Update/Request Server. LIST requests are sent
through the appropriate channel to SDB List Server.

• System timer event triggered - the first timer set up in initialization, occurs at
whole-hour intervals, as indicated in the fourth input parameter. It initiates
database maintenance operations. The database maintenance consists of
reversing any cancellations (put in the database using the CXSD command)
once their 24-hour time period has elapsed. SDB Server sends an internal
command to Update/Request Server to initiate this action. Update/Request
Server gains write access to the database files and calls the routine
remove_cancel to update both the main database and the cancel index.

• System timer event triggered - the second timer set up in initialization, triggered
every few minutes (the exact number of minutes is determined by the fifth
input parameter). It causes a check to ensure that the connection with the
ETMS Communications functions is still operating properly. If the connection
has failed, reconnection is attempted. This timer event also triggers the sending
of a NOOP message from SDB Server to the client programs (SDB List Server
and Update/Request Server); they use the message to check the status of their
socket connections to the SDB Server.

• Message removed from internal Schedule Database function socket - indicates
that room may be available in the channel for messages queued up earlier when
the channel was full. This event is important only when attempts to send
messages to the client processes fail because the channels are full. When this
happens, messages that cannot be sent are stored on a channel-specific queue.
An event of this type signals the program that a message may have been
removed from the channel, making room for more messages. The queued
messages are then put into the channel in first-in first-out (FIFO) order until
either the queue is empty or the channel is full again.

• Message received on internal Schedule Database function TCP/IP channels - a
message sent from one of the client programs (a response to an INHB, ACTV,
FPSD, CXSD, or LIST request). This event type occurs when one of the
client processes puts a message in the internal channel. If the message is a

ETMS System Design Document
Version 6.0

22-7

response to an INHB, ACTV, FPSD, or CXSD command, that response is
sent back to the ETMS Communications functions to be passed back to the
original requestor. If it is an error message, SDB Server may change the
message slightly before passing it back to make it more user-friendly.

• Schedule Database function message received from another SDB Server
(cross-string) - a message sent from another SDB Server process running on
another string. The messages they send are commands received on their own
string that alter the contents of the database (INHB, ACTV, FPSD, and CXSD
commands). This event type keeps databases across strings identical in case
of the failure of one string and a switch-over to another.

Error Conditions and Handling

SDB Server writes all its diagnostic messages to the sdb_server.pad.timestamp window.
Errors occurring during initialization are all fatal with the following exceptions: not being able
to switch directories and any error that can be recovered using default values. An appropriate
error message is written to the screen, and the program exits. The sdb_server.pad.time stamp
is saved. Therefore, any messages written after the pad has successfully opened will be
saved for examination. The error messages that can appear during initialization are the
following:

• No filename passed in as argument.

• Cannot open arguments file.

• No TCP/IP file name in arguments file.

• No listserver class in arguments file.

• No time interval for db cleanup routines in args file.

• No time interval for polling frequency in arguments file.

• Bad alias filename.

• Cannot map alias file.

• No site authorization filename in args file.

• Cannot load site authorization codes.

• Cannot connect to node switch.

Errors in responding to requests may be due to some error in the request text,
communications problems, or system problems. In each case, an error-specific message is
written to the pad and also sent back to the requesting process. Many of the request-specific
error messages are originally generated by SDB List Server or Update/Request Server and

ETMS System Design Document
Version 6.0

22-8

passed back by SDB Server. The specific errors passed back to the ETMS Communications
functions to be returned to the appropriate list server are as follows for each command:

• LIST:

o REQUEST error: Bad mode designator

o REQUEST error: Unknown airport(s): airport name

o REQUEST error: Bad date

o REQUEST error: Bad start time

o REQUEST error: Bad end time

o REQUEST error: No name for LIST output file

o REQUEST error: Cannot create/open LIST output file

o REQUEST error: Cannot write to LIST output file

o SYSTEM error: Error putting message in channel

• INHB:

o INHB failed: Unknown flight id flt_id

o INHB failed: Unknown flight id found in request ==> text_string

o INHB failed: Unable to inhibit canceled flight

o INHB failed: Bad date found in request ==> text_string flt_id

o INHB failed: Unknown airline airline identifier

o INHB failed: Unable to access schedule database

• ACTV:

o ACTV failed: Unknown flight id flt_id

o ACTV failed: Unknown flight id found in request ==> text_string

o ACTV failed: Unable to activate canceled flight

o ACTV failed: Bad date found in request ==> text_string flt_id

o ACTV failed: Flight already active flt_id

o ACTV failed: Unknown airline airline identifier

o ACTV failed: Unable to access schedule database

• CXSD:

o CXSD failed: Unknown flight id flt_id

o CXSD failed: Unknown flight id found in request ==> text_string

o CXSD failed: Flight is not effective within 12 hour range flt_id

ETMS System Design Document
Version 6.0

22-9

o CXSD failed: Bad time found in request ==> text_string flt_id

o CXSD failed: Flight already canceled flt_id

o CXSD failed: Unknown flight leg flt_id

o CXSD failed: Unknown airport found in request ==> text_string flt_id

o CXSD failed: Unable to access schedule database

• FPSD:

o FPSD failed: Flight id already exists flt_id

o FPSD failed: Bad date found in request ==> text_string flt_id

o FPSD failed: It is past scheduled departure time for flight flt_id

o FPSD failed: Unknown flight id found in request ==> text_string

o FPSD failed: Unknown airport found in request ==> text_string flt_id

o FPSD failed: Bad time found in request ==> text_string flt_id

o FPSD failed: Bad ETE found in request ==> text_string flt_id

o FPSD failed: Bad aircraft type found in request ==> text_string flt_id

o FPSD failed: Leg with overlapping flight period already exists. Old leg:
dep_ap dep_time arr_ap arr_time. New leg: dep_ap dep_time arr_ap
arr_time

o FPSD failed: Unable to access schedule database

If a CXSD, FPSD, INHB, or ACTV command is received from a site not authorized to issue
commands that make changes to the database, the error message "This site not authorized to
perform this command" is returned.

If an unrecognized message is received by the SDB Server, a message is sent back to the
ETMS Communications functions echoing the first word of the command: "word failed:
Unknown command."

22.2 The Update/Request Server Process

Purpose

The Update/Request Server has the following functions:

• It feeds FS messages to the NAS Distribution Process (NAS.DIST) to project
flights a number of hours in advance before the actual departure time.

• It makes changes to the SDB itself at the request of traffic controllers. If a
change affects any flights falling within a time period for which
Update/Request Server has already generated an FS message, additional

ETMS System Design Document
Version 6.0

22-10

schedule messages or scheduled flight cancellation messages (RS) may be
generated.

Execution Control

The Update/Request Server is started along with the SDB Server and the SDB List Server by
nodescan. The Update/Request Server is invoked with one command line argument: the name
of an ASCII file that contains all the necessary initialization parameters, which are described
in the Input section.

The Update/Request Server runs continuously. If it fails and it was started as a child process,
the SDB Server restarts it. On the other hand, if it was started by a script, nodescan restarts
it.

Input

The initialization parameters, read from the arguments file at program startup, are as follows:

• Primary network addressing site.

• Secondary network addressing site.

• Name of the TCP/IP file to communicate with the SDB Server.

• Name of the file with pathnames of all the SDB database files.

• Interval at which to update Monitor/Alert (in minutes).

• Number of hours before flight departure to send data to Monitor/Alert.

• Number of hours to save FS or RS messages in a queue before deleting them.

• Directory in which the program will run.

• Name of file in which to save diagnostic messages relating to requests.

• Name of file in which to store update messages.

• Parameter that indicates whether to output update messages to a file.

• Parameter that controls the display on a processing pad.

• Name of file in which to store crash-related information.

• Parameter that controls whether to start generating FS messages from the time
stored in the crash-related information file or from the current time.

• Maximum number of message buffers to be sent at any one time.

ETMS System Design Document
Version 6.0

22-11

• Maximum number of update messages to be sent in the time interval equal to
the number of minutes specified in the fifth input parameter.

Run-time input to the Update/Request Server is in the form of commands received from the
SDB Server. These commands are as follows:

• FPSD - add new flight to SDB or edit existing flight.

• ACTV - activate flight.

• INHB - inhibit flight.

• CXSD - cancel flight.

• REMV - remove expired cancellations.

Update/Request Server also receives NOOP messages from the SDB Server; they are used
for maintaining a connection between the servers.

Output

The main output of the Update/Request Server consists of large communications buffers filled
with FS messages generated on a continuous basis. The program also generates RS
messages in response to INHB and CXSD commands for flights whose FS messages were
already sent; it generates FS messages for any flights added to the database with an FPSD
command (which would have been sent out earlier if it had been in the database) and for
previously inhibited flights activated by an ACTV command (flights for which FS messages
should have been generated were the flights present and active within the last 24 hours).

• Processing Pad Output - contains all error messages, warnings, and FS and RS
messages. Depending on the value of the twelfth input parameter, either all the
FS messages generated will be shown or just the first message in every update
buffer for every update.

• FS and RS Messages File - contains all FS and RS messages generated, if
created. (The creation of this file depends on the value of the eleventh input
parameter.)

• Requests file - contains the requests that failed and appropriate diagnostic
messages.

• Crash-related information file - contains the ASCII departure time for the last
flight with a successfully transmitted FS.

FS Message Format

ETMS System Design Document
Version 6.0

22-12

An FS consists of character data items separated by spaces. The first data item in a message
is the encoded time of message creation. It is expressed in ASCII-coded seconds and
therefore is likely to contain unprintable characters. The rest of the items in the FS message
are in readable ASCII characters. The data items are described in the following list in the
order in which they appear in the message. (Lengths are given as maximum possible values;
actual lengths could be shorter.)

(1) 4-character timestamp followed by string XFS.

(2) 7-character flight ID followed by /, followed by 3-character computer ID. The
computer ID consists of a letter from A to Z followed by a number from 01 to
99, and it is generated sequentially for every FS message. The number part is
incremented before the letter part.

(3) 4-character aircraft type.

(4) 4-character cruising airspeed in nautical miles/min * 100.

(5) 4-character departure airport.

(6) P followed by a 4-character departure time. (P stands for planned.) The first
two digits of the departure time represent hours; the last two, minutes.

(7) 3-character cruising altitude in hundreds of feet.

(8) 512-character field10 followed by /, followed by 4-character estimated time of
arrival (ETA).

(9) 4-character Julian departure date.

RS Message Format

An RS consists of character data items separated by spaces. The first data item in a message
is the encoded time of message creation. It is expressed in ASCII-coded seconds and
therefore is likely to contain unprintable characters. The rest of the items in the RS message
are in readable ASCII characters. The data items are described in the following list in the
order in which they appear in the message. (Lengths are given as maximum possible values;
actual lengths could be shorter.)

(1) 4-character timestamp followed by string XRS.

(2) 7-character flight ID followed by /, followed by 3-character computer ID.
Computer ID consists of a letter from A to Z followed by a number from 01 to
99, and it is generated sequentially for every RS message. The number part is
incremented before the letter part.

(3) 4-character departure airport.

ETMS System Design Document
Version 6.0

22-13

(4) 4-character arrival airport.

(5) 4-character Julian departure date.

(6) 4-character departure time. The first two digits of the departure time represent
hours; the last two, minutes.

Processing

When Update/Request Server starts executing, it processes the command line parameters file,
and it maps the SDB files (see Figure 22-2). It then opens connections to the ETMS
Communications functions (the first or second input parameters) and the SDB Server (the
third input parameter) and initializes their event counts. If the program encounters any errors
during these steps, it exits. Otherwise, it enters an infinite wait loop where it performs
dispatches when corresponding event counts are triggered.

OS timer event FS messages

schedules

schedules schedule changes

INHB, ACTV, FPSD, CXSD
requests

FS messages

RS messages

Update
M/A

22.2.1

SDB

Process
requests
22.2.2

Figure 22-2. Data Flow of the Update/Request Server Process

Under normal circumstances, resend_mode is False. It is set to True when a message to
NAS.DIST is returned because ETMS Communications and/or NAS.DIST are down. The
strategy is to keep trying to reconnect to the NAS.DIST, and to keep sending a dummy RS
message to the NAS.DIST until it is not returned. At that point resend_mode is set to False,
the originally returned message is resent, and the process of generating and sending messages
to the NAS.DIST, as well as advancing the crash-related information file time (the last time at
which messages were generated) is resumed, without having to keep track of the generation
time, of which messages were sent and returned and must be resent, etc.

ETMS System Design Document
Version 6.0

22-14

The different events that can occur are as follows:

• The Request_Get_Ec or Msg_Get_Ec event count - triggered by a request from
the SDB Server. This event count causes the Update/Request Server to
dispatch the Process Requests module.

• The T15_Ec event count - invokes the Update Monitor/Alert module. Its
frequency is determined by the fifth input parameter (which used to be
hard-wired at 15 minutes).

• The T1_Ec event count - invokes every minute either the flush_updates routine
if resend_mode is False, or the sdb_check_resend routine if True. Both
routines try to verify the connection to the NAS.DIST, and both attempt to
reconnect, if necessary. Sdb_check_resend may toggle resend_mode . If the
connection to NAS.DIST is intact (or has been re-established) and there are any
messages waiting in the Updates queue, both routines attempt to transmit them.

• The T2_Ec event count - invokes the upkeep routine every two minutes. It
consists of several checks to ensure that all necessary connections are in order.
If Update/Request Server does not have write access to the SDB, it tries to
map the SDB for writing. If there is no connection to the SDB Server, it tries
to reestablish it. Then, if there are any requests waiting in the Request queue, it
dispatches the Process Requests module.

• The Timeout_Req_Ec - maintains connection to the SDB Server. If the
Update/Request Server does not receive a NOOP message from the SDB
Server within a time period related to an ETMS Communications constant, this
event count triggers a reconnection to the SDB Server. The old connection is
closed and an attempt to reconnect is then made.

22.2.1 The Update Monitor/Alert Module

Purpose

The Update Monitor/Alert module makes flight schedule information available to the central
site User Interface function within a number of hours before the flight departs. The number
of hours is determined by the third input parameter in this module's Input section. See Figure
22-3 for the logic flow of the Update Monitor/Alert module.

ETMS System Design Document
Version 6.0

22-15

Have
NASDIST
address?

Is this the first
pass?

Have
NASDIST
address?

Transmit
FS’s

Get
NASDIST
address

Set flag, increment
event counter

Time event

Yes

No

NoYes

No

Begin

End

End
No

Generation

Yes

Generate FS’s
for the time the

system was
down

Generate
FS’s for this

update period

Generation
successful?

Yes

Figure 22-3. Logic for the Update Monitor/Alert Module

ETMS System Design Document
Version 6.0

22-16

Input

The Update Monitor/Alert module reads flight data from the SDB. It also accepts the
following parameters which the Update/Request Server reads from its argument file:

• Function site name to connect to ETMS Communications.

• Interval at which to update Monitor/Alert (in minutes).

• Number of hours before flight departure to send data to Monitor/Alert.

• Number of hours to save FS or RS messages in a queue before deleting them.

• Name of file in which to store update messages.

• Parameter that indicates whether to send update messages to a file.

• Parameter that controls the display on a processing pad.

• Name of file in which to store crash-related information.

• Parameter that controls whether to start generating FS messages from the time
stored in the crash-related information file or from the current time.

• Maximum number of message buffers to send at any one time.

• Maximum number of update messages to transmit in a single period of time
determined by the interval parameter.

Output

The main output of the Update/Monitor Alert module consists of large communications
buffers filled with FS messages generated on a continuous basis.

The Update/Monitor Alert module optionally sends FS messages to the process pad and the
FS messages file. It also sends to the process pad the total number of FS messages generated
and the number of them successfully transmitted in each batch. Error messages for errors
that occur while this branch is active also go to the process pad. After the Update
Monitor/Alert module transmits a buffer of FS messages, it writes the time stamp of the first
FS message in the buffer to the crash-related information file.

Processing

Preprocessing - The time event count for the Update Monitor/Alert module is incremented
so its next invocation always coincides with the beginning of the next time slot. (In other
words, the invocation of Update Monitor/Alert is independent of the length of time it takes to
process one time slot.) Thus, if the time event is set to occur every 15 minutes,
Update/Monitor Alert is always invoked at the 0th, 15th, 30th and 45th minute of the hour.

ETMS System Design Document
Version 6.0

22-17

However, if resend_mode is True (because ETMS Communications and/or NAS.DIST are
down) Update Monitor/Alert does not generate or send any messages, nor check the
connection to NAS.DIST - instead, it sets the T15_Ec event count to occur sooner (just as if
it were trying to send multiple buffers) and returns control to the Update/Request Server.

When Update Monitor/Alert is invoked, it first checks to see if it has NAS.DIST's address. If
it does, it proceeds further. Otherwise, it tries to get the address. If it fails, it sets a flag,
increments the normal update period event count, and returns control to the Update/Request
Server.

On the first invocation, if the ninth input parameter was set to start generating messages
based on the time in the crash-related information file, Update Monitor/Alert generates FS
messages that should have been generated while the system was down. This is done by using
the time stored in the crash-related information file as the starting point from which to
generate messages. After each normal transmission, the system stores (in the crash-related
information file) the departure time of the flight for which an FS message was just sent.
Thus, the system can always regenerate FS messages lost from the Updates queue when the
system went down.

Prior to generating new FS messages, the system reports the number of unsent messages (if
any) stored in Updates queue. These are FS messages that could not be transmitted before,
either because there was no connection to NAS.DIST or because the program generated more
FS messages than the maximum throughput of the system.

Routines - The Update Monitor/Alert module has two routines: build_update_message and
transmit:

• build_update_message routine - After the preliminary steps described in the
Preprocessing section have been taken, the system generates and enqueues FS
messages for this update. When this routine is invoked the first time, the
system calculates a pointer to the first applicable flight record in the SDB. If
the corresponding parameter was specified and build_update_message was
called to regenerate the FS messages missed while the system was down, the
advance time is added to the time from the crash-related information file to
calculate the starting update time. Otherwise, the advance time is added to the
current time. The call to get_time_table returns the pointer to the first flight
record in the corresponding time slot.

The ending time for the update is always calculated by adding the update period
length to the current time plus the advance time. After this, the system
proceeds to generate and add FS messages to the update buffer. If the buffer
gets full, the system adds it to the Updates queue and creates a new buffer.
This is done by a dedicated set of routines called from build_update_message.
When the departure time in SDB record matches this update's ending time, FS
generation is ended. A pointer to this SDB record is saved. The next time the
build_update_message routine is called, the FS generation continues from this

ETMS System Design Document
Version 6.0

22-18

record. Thus, if the build_update_message routine is not called for several
update periods (because of some problem), the FS generation will pick up
where it ended the last time. When the time reaches 2400, the pointer in the
SDB is reset to the beginning of the SDB.

If there is no connection between the Update/Request Server and the
NAS.DIST for a sufficiently long period of time, the FS messages accumulating
in the Updates queue become outdated and are discarded. This time period (in
hours) is set in the fourth input parameter.

• transmit routine - attempts to transmit the update buffers stored in the Updates
queue to the NAS.DIST one at a time. If transmission is successful, the FS
messages from that buffer are output to the processing pad and to the FS
messages file. The time stamp of the first message in the buffer is copied into
the crash-related information file.

If after transmission, there are still FS messages waiting in the Updates queue,
the one-minute event count is incremented to attempt transmission one minute
later (see Figure 22-4).

Begin

Transmit buffer

Save last sent
FS

dep time in
crash-info file

Close connection

Delete
transmitted
buffer from
the queue

Print transmitted FS

Queue empty OR
channel full OR

of FS sent > MAX?

End

Able to
transmit?

Connection?
Made MAX
attempts?

Yes

No

No

Yes

YesYes

No
No

Figure 22-4. Logic for the Transmit Routine

Error Conditions and Handling

(1) If there is no connection to the node switch, the process tries to reconnect
repeatedly (once a minute). If NAS.DIST can't be found, the process keeps
trying to get its address.

ETMS System Design Document
Version 6.0

22-19

(2) If some other error occurs during transmission, two more attempts to transmit
are made before exiting.

ETMS System Design Document
Version 6.0

22-20

22.2.2 The Process Requests Module

Purpose

The Process Requests module processes requests from the TSD to make changes to the
Schedule Database. As a result of these changes, corrective FS or RS messages can be
generated and sent to the Monitor/Alert function (see Figure 22-5).

NoYes

Yes

No

Yes

No

No

count

Yes

Request
event

End

Begin

SDB request?

NOOP
message?

Successful?

Report completion
status to

SDB server

Remap SDB
for reading

Process
request

Report status
to SDB server

Remap SDB
for writing

Reset
connection

timeout event

Read
Request

More requests?

Yes

No

No

Figure 22-5. Logic for the Process Request Module

Input

The Process Requests module accepts the following parameters that the Update/Request
Server reads from its argument file:

ETMS System Design Document
Version 6.0

22-21

• Name of the TCP/IP file to communicate with the SDB Server.

• Name of the file in which to save diagnostic messages relating to requests.

The Process Requests module receives the following messages from the SDB Server:

• INHB - inhibit a flight.

• ACTV - activate a flight.

• CXSD - cancel a flight.

• FPSD - add a new flight to the SDB or edit an existing flight.

• REMV - reverse an expired cancellation.

Output

• When a request is successfully executed, the Process Requests module sends a
success message to the SDB Server. Otherwise, it sends a failure message.

• When a request fails, the request message, the time it was received, and the
error message are saved in the requests diagnostics file (the second input
parameter).

• One or more FS/RS messages may be generated depending on a request.

Processing

The Process Requests module handles four different request commands covered in the
following order in the indicated sections:

• INHB - processed by the process_inhibit routine - Section 22.2.2.1

• ACTV - processed by the process_activate routine- Section 22.2.2.1

• CXSD - processed by the cancel_flight routine - Section 22.2.2.2

• FPSD - processed by the add_flight routine - Section 22.2.2.3

Another command accepted by this module, the REMV command, is an internal command
sent by the SDB Server process to initiate a database maintenance routine.

Routines - The Process Request module uses the following routines which apply to all the
module commands:

• sdb_get_indices routines

ETMS System Design Document
Version 6.0

22-22

o get_air_carrier routine has for input the air carrier name and the time of
day of the desired time bucket. The routine uses
get_hash_air_carrier_ptr to locate the air carrier in the hash map file and
obtain the offset to the linked list of flights for the air carrier; the offset is
then returned to the calling routine.

o get_arr_airport routine has for input the arrival airport name and the time
of day of the desired time bucket. The routine uses
get_hash_arr_airport_ptr to locate the arrival airport in the hash map file
and obtain the offset to the timetable for the arrival airport. The offset to
the correct time bucket is calculated using the time-of-day input. The
offset to the linked list of flights for that time bucket is then retrieved and
returned to the calling routine.

o get_dep_airport routine has for input the departure airport name and the
time of day of the desired time bucket. The routine calls
get_hash_dep_airport_ptr to locate the departure airport in the hash map
file and obtain the offset to the time table for the departure airport. The
offset to the correct time bucket is calculated using the time of day input.
The offset to the linked list of flights for that time bucket is then retrieved
and returned to the calling routine.

o get_flight_id routine has for input the flight ID. The routine uses get_hash
flight_id_ptr to locate the flight in the hash map file and retrieve the
offset to the linked list of legs for that flight; the offset then is returned to
the calling routine.

o get_time_table routine has for input the time as a four-digit integer. The
routine then locates the time table slot for that time and returns the offset
to the flight in the SDB from that time slot.

• sdb_indices_util routines

o create_map_file routine creates an empty map file and initializes all the
fields in the entire map file. The type of the map file is defined by the
map_type variable. The field values are similarly defined by the type of
the map file.

o get_hash_dep_airport_ptr routine returns the pointer in the departure
airport hash map file to the specified departure airport or to the next
empty bucket.

o get_hash_flight_id_ptr routine returns the pointer in the flight id hash
map file to the specified flight id or to the next empty bucket.

o open_map_file routine opens an existing map file for exclusive write so it
can be updated.

• sdb_add action routine has for input the type of action (add, cancel, or inhibit)
and the SDB offset of the flight to be added. The routine first opens the action

ETMS System Design Document
Version 6.0

22-23

list map file appropriate for the action type. If the file does not exist, it is
created. The flight is added to the linked list in alphabetical order, and the map
file is closed.

• sdb_remove_action routine has for input the type of action (add, cancel, or
inhibit) and the flight ID of the flight to be removed. The routine first opens
the action list map file appropriate for the action type. The flight is then located
on the linked list and removed. If the action is a cancel, the cancel bit is set to
zero in the SDB flight record, and the map file is closed.

22.2.2.1 INHB/ACTV Command Processing

When the INHB or ACTV requests are received, the entire message - consisting of the
command word (INHB, ACTV), the flight or airline ID, and the optional start and end dates -
is broken down into its components by the inhibit_activate_delete routine. The program
computes the start and end dates in the same way as for the FPSD requests (see Section
22.2.2.3). If the request contains a flight ID, the program calls the get_ flight_id routine,
which returns a pointer to the list of legs for the flight ID in question. If, however, an airline
name is specified, the program makes a call to the get_air_carrier routine which returns a
complete list of flights for that airline. The list is then processed by either process_inhibit or
process_ activate depending on the request type. No operation is permitted on a canceled
flight, and such a request would produce an error message. Otherwise, a flight is inhibited or
activated as described in the next section. An RS message is generated for INHB if, by the
time it is received, an FS message has been already sent for the flight for that date. As a
result of a request, a FS message may be generated for the flight leg in case an ACTV is due
by that time. An inhibit bit is set or cleared in the flight record depending on the request type
and whether or not the flight is still inhibited for some interval. A message containing a list of
inhibit periods before and after the request was processed is returned to SDB Server.

Inhibit List Processing - In addition to a list of periods in which a flight is defined to operate
(the effective/discontinue dates), each flight has a second independent inhibit list. Even if the
flight is defined to fly at a specific date on the first list, it is not operational if this date appears
on the inhibit list. Such dual structure provides the capability to temporarily inhibit and
activate a flight without affecting its predefined original operational period. An inhibit list is
implemented as a list of nodes, each of which contains starting and ending dates for the
period represented by the node. These intervals are noncontiguous and discrete; this means
there is at least one day on which a flight would be operational (if it is operational according
to the first list) between any two intervals on the inhibit list. When the SDB is created from
the raw input data there are no inhibit lists associated with the flight records. As the live SDB
is subjected to INHB and ACTV requests, the inhibit list gets created, grows, shrinks,
disappears, and gets created anew. All manipulation of the lists is handled by
substruct_period_from_ed_list and add_period_to_ed_list routines. The first routine
computes set exclusion and the second computes set union between the list and the period in
request. As a result of the operation:

ETMS System Design Document
Version 6.0

22-24

• a new node may be added to the list

• one or several nodes may be deleted, and/or

• an existing node might have its dates reset

If a node on the list starts to overlap in time with other list nodes, the whole list is adjusted to
reassert noncontiguousness and discreteness. The flight is considered to be active only when
there are no periods on its inhibit list (when its inhibit offset is null). Only then is the inhibit
status bit cleared.

22.2.2.2 CXSD Command Processing

The cancel_flight routine processes the CXSD request. The CXSD request is valid for
flights departing within a 24-hour range from the time the request is received, plus or minus
12 hours from receipt of the request. Hence, the possible departure date can be within a
two-day interval. The precise date is determined in the following fashion:

(1) Twelve hours is subtracted from the current time to obtain the lower end point
for the range - this value is in the system's internal time format and thus
contains the date as well as the time.

(2) This time is then compared to the departure time in the flight record.

(3) If the time in the flight record is equal to or greater than the lower end point
time, the flight is operative on the lower end point date.

(4) If not, the flight is operative on the upper end point date, which is computed by
adding 12 hours to the current time.

When the flight is canceled, its status bit is set and remains so for 24 hours. During this
time, the flight is invisible to the outside world: the record cannot be affected by any SDB
commands, and the flight data does not appear on any reports or be sent scheduled updates.

After 24 hours, the status bit is cleared and the flight regains its normal status; this is done
by remove_cancel routine, which is triggered internally by the software at regular intervals.
The remove_cancel routine first opens the cancel (action) list map file. All the flights are then
checked on the linked list of canceled flights to determine which have been canceled for 24
hours or more. These flights are removed from the linked list, and the cancel bit is set to
zero for each flight in the SDB flight record. The map file is then closed.

Error Conditions and Handling

• If the connection to the SDB Server is lost, the Process Requests module exits.
The connection is re-established by the upkeep routine, invoked every two
minutes.

ETMS System Design Document
Version 6.0

22-25

• If the Process Requests module cannot remap the SDB with the
read-with-intent-to-write (RIW) lock, it exits. Another attempt to change the
lock is made by the upkeep routine, invoked every two minutes.

• If a request cannot be carried out on the flight because of the flight status, a
failure message is returned. For example, no request can be carried out on a
canceled message, except REMV.

• If a received request contains syntax errors or an error occurs in responding to
a request, the request message is saved in the requests diagnostics file with the
time it was received. A failure message is returned to the SDB Server.

22.2.2.3 FPSD Command Processing

Purpose

The FPSD command is issued to add a new flight, add a new flight leg for an existing flight,
or to edit an existing flight.

FPSD Command Format

The FPSD command has the following format:

flt_id dep_ap dep_time arr_ap ete acft_code days start_date end_date

The days, start_date, and end_date are optional. For any optional argument to be parsed,
the optional arguments preceding it must all be present. Any missing arguments are
computed as described in the following four cases:

NOTE: If a request, when received, is past departure time for that day and the start_date is today, it is
promoted to tomorrow. If the days of operation are for one day only, tomorrow's day of the
week is set. Bear this in mind when reading the following descriptions.

(1) No optional arguments - days get set to the day of the week on which the
request is received. (For example, if the FPSD is received on Monday, days are
set to OXOOOOO.) Both the start date and the end date are set to the date
on which the FPSD was received. The flight is added for one day.

(2) days are present - has the same effect as the first case.

(3) days and start date are present - weekdays of operation are set to days. The
flight is set to be effective from the start date until one year after the date on
which the current SDB was created (known as the maximum discontinue date).

(4) days, start date, and end date are present - flight is set to operate on days of
the week from the start date to the end date.

ETMS System Design Document
Version 6.0

22-26

Top Level FPSD Command Processing -The top level processing of the FPSD command
begins with the add_flight routine (see Figure 22-6). Here the buffer received from the SDB
Server is parsed into its constituents. The routine computes the primary departure and the
arrival airport names to be stored in the database, as well as defaults for the three last optional
arguments for the FPSD command. Then other necessary information, such as an index into
the aircraft type file and an offset into the aircraft category file, is computed within the
process_add routine.

ETMS System Design Document
Version 6.0

22-27

Begin

Get list of existing
records with
same flight id

Compute argument
values

Yes

Yes

No

Yes

Yes

No

End

Time conflict
with

existing legs?

No

Parse arguments

Try to edit next
record on the list

(Process_leg)

Any existing
records?

Is this a new
leg?

Successful?

Create error
message

Add new record
to SDB

No

Yes

Figure 22-6. Logic for the add_flight Routine

ETMS System Design Document
Version 6.0

22-28

In the same routine, a decision is made on whether the request implies the addition of a new
record or the editing of an existing one. The get_same_flight_id_list routine returns two
pointers to two lists of flight legs with the same flight ID as in the FPSD request: the first list
contains legs with flights for the same departure and arrival airport pair; the second list
contains different legs. If the first list is not empty, then the process_leg routine is used on the
entire list to edit an existing leg. If the first list is empty, then the dep_arr_times_conflict
routine is used to check if a time en route period in the FPSD overlaps with any of the legs on
the second list. If such an overlap is detected, the FPSD returns a relevant error message
since the flight cannot be defined on more than one leg during the same time interval. If there
is an overlap, the add_new_record_to_sdb routine is called to add a new flight leg.

Adding a New Flight/Flight Leg - The add_new_record_to_sdb routine adds a new flight
record at the end of the SDB table mapped file. The mapped file address is obtained by
looking at the event_route_off field in the first record of the file containing its current length
in bytes. All computed and derived flight data is then assigned to that location by a call to the
fill_sdb_record routine. Next, a call to the search_sdb_to_add should return pointers to the
records preceding and following the one to be added, based on the departure time and the
flight ID order.

If search_sdb_to_add finds an existing record with the same data as in the FPSD command
during the search, it returns False. This indicates an inconsistency between the flight ID
index file and the main SDB file. In this case, the program terminates with the SDB integrity
violated message. If the search_sdb_to_add routine returns True, the sdb_add_indices
routine is called to update the index files. If they cannot be updated, the program terminates
with an SDB integrity violated message.

For information on the logic flow for the add_new_record_to_sdb routine, see Figure 22-7.

The sdb_add_indices routine calls the following routines to add the flight to each index:

• The add_time_table_index routine has for input the offset in the SDB of the
new flight being added. The routine compares the departure time of the new
flight to the flight in the corresponding time bucket: (1) if the new flight has an
earlier time than that of the flight in the time bucket, the offset to the new flight
replaces the offset to the old in the time table index; (2) if both flights have the
same time, the flight IDs are compared and if the new flight has a flight ID
alphabetically before the old, the offset to the new flight replaces the offset to
the old in the time table index.

• The add_flight_id_index routine has for input the offset in the SDB of the new
flight being added. The routine first determines if the flight is in the hash map
file: (1) if it is not, the flight is added to the hash map file and it is put on a
linked list by itself; (2) if it is already in the hash map file , a new leg is added
in the correct position on the linked list for this flight, according to departure
time.

ETMS System Design Document
Version 6.0

22-29

EndCreate FS’s
if needed

Link new
record in

Terminate
Program

Update indexes

Find pointers
to preceding and
following records

Fill out new
record at the end

of SDB

Found
identical
record?

Terminate
routine

Successful?

No

No

Yes

Yes

Begin

Figure 22-7. Logic for the add_new_record_to_sdb Routine

• The add_air_carrier_index routine has for input the offset in the SDB of the
new flight being added. The routine first determines if the air carrier of the
new flight is already in the hash map file: (1) if it is not, the air carrier is
added to the hash map file and the flight is put on a linked list by itself; (2) if
the air carrier is already in the hash map file , the time of this flight is

ETMS System Design Document
Version 6.0

22-30

compared to that of the flight in the linked list; if time and flight ID are the
same, it returns with a "duplicate flight" error code; otherwise, the new flight is
added to the linked list for this air carrier, according to departure time.

• The add_arr_airport_index routine has for input the offset in the SDB of the
new flight being added. The routine first determines if the arrival airport of the
flight is in the hash map file: (1) if it is not, the arrival airport and the offset in
the timetable for the new flight are added to the hash map file and the new
flight is put on the arrival airport linked list by itself; (2) if the arrival airport is
already in the hash map file , the time of this flight is compared to that of the
flight in the linked list; if time and flight ID are the same, the flight is not added;
otherwise, the new flight is added to the linked list for this arrival airport,
according to arrival time.

• The add_dep_airport_index routine has for input the offset in the SDB of the
new flight being added. The routine first determines if the departure airport of
the flight is in the hash map file: (1) if it is not, the departure airport and the
offset in the time table of the new flight are added to the hash map file and the
new flight is put on the departure airport linked list by itself; (2) if the departure
airport is already in the hash map file , the time of this flight is compared to
that of the flight in the linked list; if time and flight ID are the same, the flight is
not added; otherwise, the new flight is added to the linked list for this departure
airport, according to departure time.

If processing continues successfully, an FS message may be generated for a newly added
flight. The new record is linked into the SDB by storing its offset in the preceding record and
setting its offset_to_next field. This process is concluded by writing out the length of the
SDB mapped file into the first record.

Editing an Existing Record - An SDB database may contain more than one record for the
same flight leg. It is possible, for example, for a flight to fly from the first to the ninth of the
month on Tuesdays and Thursdays; from the tenth to the thirtieth on Mondays, Wednesdays,
and Fridays; and from the twenty-first to the thirtieth on Saturday and Sunday. The flight
data is stored in the SDB in the form of three separate records, identical except for differently
set bits for the weekdays of operation in the status_bits field and offsets into different lists of
effective periods of operation.

As long as two records have the same departure and arrival airports, they represent the same
flight leg. Besides days of the week, the other ways in which flight data could vary while the
flight record still represents the same leg are equipment type and departure and/or arrival time.
These four data categories (described on the next page) can be edited by the FPSD command
(see Figure 22-8). Only one change is allowed per request, except for departure and arrival
times, which can be changed simultaneously, and a special case (described in this
subsection). If more than one change is required, enter the necessary FPSD commands
successively to implement them. (This one-change requirement permits the program to
determine which of several possible SDB records needs editing.) The program steps through

ETMS System Design Document
Version 6.0

22-31

the list of flight legs until it finds one whose flight data differs from the data in the FPSD in
only one allowed category. It edits that record, and when editing is completed, the flight leg
list processing terminates and the Update/Request Server returns a status reply message.

Create error
message

Edit flight record

Determine what
type of editing is

necessary

End

Begin

More than
one type of editing is

requested?

Yes

No

Figure 22-8. Logic for Editing an Existing Record

The following list shows how the changes allowed by the FPSD command are implemented:

• Equipment - Change an equipment index in the SDB record to point to the entry
in the equipment type file containing the new aircraft type.

• Weekdays of Operation - Reset the bits in the status_bits to the new days of
operation.

• Dates of Operation - Reset the offset in the effective dates list to point to a list
containing a single interval derived from the dates in the FPSD command,
regardless of the contents of the old list.

• Departure and/or Arrival Times - If the request is to change the arrival
time alone, it is done by resetting that field in the SDB record. If the request is
to change the departure time, that field in the SDB is changed. However, since

ETMS System Design Document
Version 6.0

22-32

the SDB is sorted on departure time, simply editing the arrival time field in the
record would destroy the order. The actual steps taken are as follows (see
Figure 22-9):

(1) The Search_Sdb_To_Add routine is called to return pointers to
records preceding and following the one being edited.

(2) The two records are linked around it.

(3) Since the change involves departure time, an RS message may be
generated, if appropriate, and the indexes for the record are purged
from the index files; if this can't be done, the program terminates
abnormally with an SDB integrity violated message; otherwise, the
departure and arrival times get reset.

(4) The search_sdb_to_add routine is called to return pointers to the
records preceding and following the one being edited, based on the
new value of the departure time.

(5) The record is linked in by resetting its offsets and the offsets of the
preceding record (and FS message may be generated at this point).

(6) The sdb_add_indices is called to reset indexes; if it fails, the
program terminates abnormally with an SDB integrity violated
message.

• Special Case - A request to change departure time may cause the effective date
to be shifted one day forward or backward, resulting in a requested double
change. Consider a flight departing at 10 A.M. on June 11, added for a period
of more than one day at 1 P.M. on June 11. Since it was already past the
departure time when the FPSD command was received, the effective date is
stored as June 12, even if June 11 was specified in the request. If at 3 P.M. on
the same day (June 11) somebody tries to change the departure time to any
time past 3 P.M. (5 P.M., for example), the system accepts June 11 as the
effective date without attempting to promote it. However, it then becomes a
request to change both the departure time (from 10 A.M. to 5 P.M.) and the
effective date (from June 12 to June 11). Thus, a presumably valid request
would be rejected because only one change is allowed per request.

The same situation occurs if a flight is added initially with an effective date for
the same day. Any attempt to edit the departure time when it is actually past
departure time moves the effective date one day ahead.

To avoid this conflict, the system uses the following stratagem. When
qualify_editing routine (called to check the changes requested) detects a
requested change to both the departure time and the effective date, the
dep_time_effect routine is called to check if a difference between the effective

ETMS System Design Document
Version 6.0

22-33

dates actually exists. If it does not or if the flight has more than one date pair
on the effective period list, the request is rejected; otherwise, it is allowed.

Relink SDB
record

Update indexes

Create FS’s if
needed

Find pointer to
preceding and

following records
based on new

dep time

Assign new
dep/arr times in

record

Delete indexes
for old record

Relink around
to exclude

record being
edited

Create RS’s if
needed

Find pointers to
preceding and

following records

Create reply

Successful? Successful?

YesNo

No

Begin

Terminate
Program

Yes

End

ETMS System Design Document
Version 6.0

22-34

Figure 22-9. Logic for the edit_dep_time Routine

Routines associated with FPSD - The following routines are used for the FPSD command:

• sdb_delete_indices routine has for input the offset in the SDB of the new flight
being deleted. The routine calls the following five delete indexes routines in
turn and then returns a flag indicating whether or not the indexes were deleted
successfully:

• delete_time_table_index routine has for input the offset in the SDB of the flight
being deleted. It goes through the time table, relinking all records that pointed
to the deleted flight to the next flight (in chronological order) in the time table
linked list map file.

• delete_flight_id_index routine has for input the offset in the SDB of the flight
being deleted. The routine first determines if the flight is in the hash map file:
(1) if it is not, the routine returns an error value; (2) if it is, the routine links the
deleted flight record as the next available record in the flight ID linked list map
file; in addition, if the routine determines that this flight was the only leg for this
flight ID in the linked list, it clears the ID from the flight ID hash map file .

• delete_air_carrier_index routine has for input the offset in the SDB of the flight
being deleted. The routine first determines if the air carrier is in the hash map
file: (1) if it is not, the routine returns an error value; (2) if it is, the routine
links the deleted flight record as the next available record in the air carrier
linked list map file; in addition, if the routine determines that this flight was the
only flight for this air carrier in the linked list, it clears the air carrier name from
the air carrier hash map file .

• delete_arr_airport_index routine has for input the offset in the SDB of the
flight being deleted. The routine first determines if the arrival airport is in the
hash map file: (1) if it is not, the routine returns an error value; (2) if it is, the
routine links the deleted flight record as the next available record in the arrival
airport linked list map file; in addition the routine goes through the time table,
relinking all records that pointed to the deleted flight to the next flight (in
chronological order) in the arrival airport linked list map file.

• delete_dep_airport_index routine has for input the offset in the SDB of the
flight being deleted. The routine first determines if the departure airport is in
the hash map file: (1) if it is not, the routine returns an error value; (2) if it is,
the routine links the deleted flight record as the next available record in the
departure airport linked list map file; in addition the routine goes through the
time table, relinking all records that pointed to the deleted flight to the next
flight (in chronological order) in the departure airport linked list map file.

• get_hash_air_carrier_ptr routine returns the pointer in the air carrier hash map
file to the specified air carrier or to the next empty bucket.

ETMS System Design Document
Version 6.0

22-35

• get_hash_arr_airport_ptr routine returns the pointer in the arrival airport hash
map file to the specified arrival airport or to the next empty bucket.

22.3 The SDB List Server Process

Purpose

The SDB List Server interprets LIST and CLIST requests, creates flight schedule lists in
response to them, and formats them for transfer to the listserver.

Execution Control

The SDB List Server is started along with the SDB Server and the Update/Request Server by
nodescan. The SDB List Server is invoked with one command line argument; the name of an
ASCII file that contains all the necessary initialization parameters, which are described in the
Input section.

The SDB List Server process runs continuously; if it fails, it is restarted by nodescan. The
SDB Server must be running for the SDB List Server to run.

Input

 The initialization parameters, read from the arguments file at program startup, are as follows:

• Directory in which the program will run.

• Name of the file with the pathnames of all the database files.

• Name of the TCP/IP file to communicate with the SDB Server.

• Name of the file in which the response to a LIST/CLIST request will be
written.

• Name of the file with aircraft category information.

• Name of the file that associates airports with Air Route Traffic Control Centers
(ARTCCs).

• Name of the element pair file.

• Name of the file with airline categories.

After initialization, the inputs (consisting of messages from the SDB Server) are as follows:

• LIST/CLIST requests.

• UNMAP commands.

ETMS System Design Document
Version 6.0

22-36

• MAP commands.

• NOOP messages.

Output

The response to the LIST/CLIST request consists of the flight schedules in the format of the
flight_info_t data structure shared by the SDB List Server and the listserver. These
flight_info_t records are put in the file named in the fourth input parameter. A message is
returned to the SDB Server that indicates the name of the file or, in case of an error, a
specific error message.

o File that contains the flight schedules in response to a LIST request

o Messages sent through the internal channel to the SDB Server

The LIST request response file is organized as shown in Figure 22-10. The first record
consists of two short integers: the first is the count of departure flight records of type flight
_info_t (see Table 22-2 in Section 22.5) that immediately follow the second integer. The
second integer is the count of arrival flight records. Next is the first flight_info_t record,
which contains count fields for the following items:

• Fixes

• Waypoints

• Sectors

• ARTCCs

• Airways

ETMS System Design Document
Version 6.0

22-37

departure

flight

count: 3

arrival

flight

count: 1

flight_info_t record:

status_bits

sched_dep_time

…

center_count: 2

route_count: 0

fld10_len: 120

center1 center2 field10 (120 chars)

flight_info_t record:

status_bits
sched_dep_time

…

center_count: 2

route_count: 0

fld10_len: 8

center1 center2 field10

(8 chars)

flight_info_t record:

status_bits

sched_dep_time

…

center_count: 2

route_count: 0

fld10_len: 57

dummy
center1

center2

field10 (57 chars) flight_info_t record:

status_bits

sched_dep_time

…

center_count: 2

route_count: 0

fld10len: 14

center1 center2 field10

(14 chars)

cap

count: 0

ga est. count:
0

Figure 22-10. Format of the LIST Response File

At this time, the counts are zero for all of the elements but the ARTCCs. After the first
flight_info_t record are the ARTCCs; the number of ARTCCs following the flight_info_t
record is specified in the counts fields for that item. Each ARTCC is represented by a single-
character code. If there is only one ARTCC, the ARTCC count is raised to two and a
dummy ARTCC (a single-space character) is filled in so the arrival ARTCC and departure
ARTCC can be distinguished by the listserver. The final field in the flight_info_t record
contains the length of the field10 text. The field10 text is placed immediately after all of the
element names.

There are flight_info_t records (with their accompanying elements) that correspond to the
total number of departures and arrivals shown in the beginning of the file. Following the
flight_info_t records are counts and records for capacity and general aviation (GA) estimates
data (see Table 22-2 in Section 22.5): (1) a count shows the number of capacity values that
follow and the capga_info_t records containing those values; (2) a count shows the number
of GA estimates that follow and the capga_info_t records with that data. Currently, these
counts are always zeros.

ETMS System Design Document
Version 6.0

22-38

Processing

During program startup, the SDB List Server opens and reads the input parameters file
(named in the command line argument to the program invocation). It reads the parameters
described in the Input section. Initialization consists of moving to the directory named in the
first input parameter; mapping the files containing the SDB (the names of which are found in
the file named in the second input parameter); opening a channel to the SDB Server; and
setting up an event counter for messages received in, or taken out of, that channel.
Initialization is completed by mapping the files named in the remaining input parameters.

After initialization, the SDB List Server goes to sleep until an event is triggered. When an
event occurs, it is processed according to its type. The possible events are as follows:

• Internal Schedule Database function message received - a message sent from
the SDB Server. It is one of three commands:

(1) LIST or CLIST command received by the SDB Server from the
ETMS Communications functions.

(2) UNMAP command generated by the SDB Server. This command
is sent when the SDB Server receives a request it must pass on to
the Update/Request Server. The SDB List Server must unmap the
SDB files to allow the Update/Request Server to access them for
writing. After unmapping the files, the SDB List Server returns an
acknowledgement to the SDB Server, so it can send the original
request on to the Update/Request Server.

(3) MAP command generated by the SDB Server. This command is
sent after the Update/Request Server has finished processing a
request. The SDB List Server can now remap the SDB files. After
remapping the files, the SDB List Server returns an
acknowledgement to the SDB Server.

• Message removed from internal SDB channel - indicates room may be available
in the channel for a message that could not be sent earlier when the channel
was full. This event is important only when attempts to send messages to the
SDB Server fail because the channel is full. An event of this type signals the
program that a message may have been removed from the channel, making
room for more messages. The most recent message is then put into the
channel.

• System timer event triggered - a system timer set up in initialization, triggered
every few minutes. The exact number of minutes is determined by the
constant COM_SERVER_NOOP_TIME. The latter is a system-wide value
determined by the frequency that the ETMS Communications functions issue a
NOOP message to all connected channels.

ETMS System Design Document
Version 6.0

22-39

An equivalent timer event in the SDB Server process triggers the sending of a
NOOP message from the SDB Server to the SDB List Server; the SDB List
Server uses this message to check the status of its connection to the SDB
Server. If the SDB List Server receives fewer NOOP messages than expected,
the program assumes it has lost its connection to the SDB Server and tries to
reconnect.

The main function of the SDB List Server is to respond to LIST and CLIST requests. The
request is parsed first. LIST and CLIST requests are both handled in the same way by the
SDB List Server. In the parsing process, any token in the location identifier position
preceded by an asterisk is treated as if it were an ARTCC code, and expanded into a list of all
the airports in that ARTCC. Location identifiers not preceded by an asterisk are assumed to
be airport names. Each airport name in the request is stored in an array of airport names.
The list response file name in the fourth input parameter is created. A departure flights count
value of zero is put in the first two bytes of the file; and an arrival flights count value of zero
is put in the second two bytes (see Figure 22-10) to hold the place for the actual flight
counts, written in when the total number of departure and arrival flights is known.

A linked list is created for each airport in the airport names array of all flights in the database
either departing or arriving from that airport between the start and end times specified in the
request. Each flight on the list is checked to ensure that it flies on the date specified in the
request. Both days of the week and the effective/discontinue dates in the SDB record of the
flight are examined to make this determination. If the flight does occur, information from its
SDB record is used to fill the fields of a flight_info_t record (see Table 22-2). The
flight_info_t record is written to the list response file. Immediately after, any ARTCC
codes and the field10 are written into the file. A separate count is kept of all departure and
arrival flights entered into the file, and those counts are written to the first four bytes of the
file after all the flights have been entered. After the file is closed, a message containing the
name of the list response file is returned to the SDB Server.

Error Conditions and Handling

The SDB List Server writes all its diagnostic messages to the listserver.pad.timestamp
window. Errors occurring during initialization are all fatal. An appropriate error message is
written to the screen, and the program exits. The listserver.pad.timestamp is saved:
therefore, any messages written after the pad has successfully opened will be saved for
examination. The error messages that can appear during initialization are the following:

• No filename passed in as argument.

• Can't open arguments file.

• Can't map SDB files.

• No TCP/IP file name in arguments file.

ETMS System Design Document
Version 6.0

22-40

• No name for LIST/CLIST output file.

• No aircraft categories filename in args file.

• Can't map aircraft categories file.

• Unable to initialize airport pairs database.

• No element-in-center filename in args file.

• Can't initialize element-by-center table.

• No element-pair filename in args file.

The SDB List Server generates a number of LIST-request-specific error messages passed
back to the SDB Server. These are listed in Section 22.1 under Error Conditions and
Handling. The error messages that are passed back are also written to the
listserver.pad.timestamp, prefaced by the name of the routine in which the error occurred.
Errors that occur in system calls are written to the process pad.

22.4 Schedule Database Function Source Code Organization

The Schedule Database function source code resides in C files under configuration
management using ClearCase.

22.5 Schedule Database Function Data Structures

Tables 22-1 through 22-4 describe the data structures used by SDB.

Table 22-1. Node Data Structure

node

Library Name: sdb_openlib Purpose: element of updates or requests queues

Element Name: sdb_upreq_header.h

Data Item Definition Unit/Format Range Var. Type/Bits

mes buffer containing FS, RS, or re-
quest messages

up_m_t

mesnum number of messages in the
buff- er

up to MAX short

ptype processtype – Update or Re-
quest

single character U or R char

fst_tstamp timestamp of first FS message
in buffer

CALTIME

lst_tstamp timestamp of last FS message
in buffer

CALTIME

ETMS System Design Document
Version 6.0

22-41

prev pointer to previous queue node npt

next pointer to next queue node npt

Table 22-2. flight_info_t Data Structure

ETMS System Design Document
Version 6.0

22-42

flight_info_t

Library Name : sdb_openlib Purpose :
To format data for retrieval by the listserver

Element Name : sdb_list_interface.h

Field Name: status_bits Field Type: short

Data Item Definition Unit/Format Range Var. Type/Bits

taxi_bit is this a taxi flight? 1 = yes, 0 = no 0 - 1 bit 15

cancel_bit was this flight canceled (by
a CXSD command)?

1 = yes, 0 = no 0 – 1 bit 14

add_bit was this flight added (by
an FPSD command)?

1 = yes, 0 = no 0 – 1 bit 13

delete_bit was this flight deleted (not
currently being used)?

1 = yes, 0 = no 0 – 1 bit 12

inhibit_bit was this flight inhibited (by
an INHB command)?

1 = yes, 0 = no 0 - 1 bit 11

sched_dep_time scheduled departure time julian date/time - INT32

sched_arr_time scheduled arrival time julian date/time - INT32

flight_id flight id text - string7

dep_ap departure airport text - string5

arr_ap arrival airport text - string5

estimated time en route minutes 1 – 1440 short

ac_cat_code aircraft category code single character J, T, or P char

user_category airline category code single character char

ac_name aircraft name text - string4

fix_count number of fix names to
follow

- short

waypt_count number of waypoints to
follow

- short

sector_count number of sectors to follow - short

center_count number of ARTCC codes
to follow

- short

route_count number of routes to follow - short

fld10_len length of field10 to follow 0 – 255 short

ETMS System Design Document
Version 6.0

22-43

Table 22-3. capga_info_t Data Structure

capga_info_t

Library Name : sdb_openlib Purpose:
To format Capacity or GA Estimates data for retrieval
by the listserver

Element Name: sdb_list_interface_h

Data Item Definition Unit/Format Range Var. Type/Bits

ap airport name two-to four- letter
code

- string5

starttime beginning of time
range

hours and minutes 0-2359 short

endtime end of time range hours and minutes 0-2359 short

arrivals number of arrivals flights per 15
minutes

- short

departures number of
departures

flights per 15
minutes

- short

Table 22-4. q_t Data Structure

q_t

Library Name: sdb_openlib Purpose:
q_t is the queue structure used in updates and
requests queue to store FS buffers and requests
from SDB_server

Element Name: sdb_upreq_header_h

Data Item Definition Unit/Forma
t

Range Var. Type/Bits

first pointer to the first node in the queue npt

last pointer to the last node in the queue npt

max maximum number of nodes allowable
in the queue

based on
parameter

short

qnum number of nodes in the queue short

ETMS System Design Document
Version 6.0

22-44

high unusually high but still allowable
number of nodes for warnings

based on
parameter

short

